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1. INTRODUCTION

1.1 Notation
We begin by reviewing standard results and establishing notation.
(See [10] for general reference.)
Let p be a prime number and let m denote a positive integer or
©. For m<w, set q=pm and let Fq be a field of order q; for m=0,

set g=0 and let Fm=K be an algebraic closure of Ep.

Fix an irreducible root system ¥ of rank ¢ and let G(m)
denote the universal Chevalley group of type V¥ defined over Eq.

(o) (m)

G is an algebraic group and for m<w, G

of G(m).

is a finite subgroup

Choose a system {ai, 1<i<f} of simple roots in ¥ and let
{Ai,lgisl} be the corresponding fundamental dominant weights. (For
definiteness we assume that the a, have been numbered according to
the usual labeling of the vertices in the associated Dynkin diagram
(see Humphreys [7], p. 58).) The Ai form a Z-basis for the weight
lattice A associated with ¥. A partial order < is defined on A

by setting A<p if p-Ae ¥ Z+ai. For neZ' set An = {) aiAi €



MODULAR REPRESENTATIONS

AIOgai<n} and let Aoo = A" denote the set ) Z+Ai of dominant
weights}
(m)

From this point on, we fix 1<m<o and set G=G By "G-module”
we shall mean finite dimensional KG-module if m<w and finite
dimensional rational G-module if m=w.

The irreducible G-modules are indexed by Aq as follows: The

()

irreducible G '~ ’'-modules are indexed by AT via highest weights and
those modules with indices in Aq remain irreducible upon restriction
to G and form a complete set of pairwise nonisomorphic irreducible
G-modules. Let M(A) denote the irreducible G-module associated with
AeAq in this fashion.

Given any G-module M we denote by Fr(M) the G-module which has
the same underlying vector space as M but on which geG acts
according to the new rule g-x = Fr(g)x (xeM) where Fr is the

Frobenius automorphism of G which raises matrix entries to the pth

power. It is easy to see that for AeAp and 0<j<m-1 we have

FrM(pIA)) « M(p3*IA) while FroMOo™ M) « M(A) if me<w.

1.2 Purpose and Method

We now state the main tool used in the paper.

1.2.1 STEINBERG’S TENSOR PRODUCT THEOREM ([101, p. 217). Let uEAq

m-1 .
and let pu= Y pJuj (ujeAp) be the p-adic expansion of u. Then
j=0



m~-1 . m-1 .
M(p) « o M(plp.) ~ o FrJ(M(u.)).
j:O J j:O ‘]

(If m=w, the factors in the tensor products are eventually K and so
the products can be viewed as finite.)
The following proposition is well-known (cf. [7], p. 117).

1.2.2 PROPOSITION. Assume m=x so that GzG(m). Let Bioooaby € AT

and set uzzui. If MO\ (MeA’) is a composition factor of M =
®M(ui), then Ap. Furthermore, M(u) 1is a composition factor of M

of multiplicity one.

We use the tensor product theorem to strengthen this proposition
when m=x and to obtain for m<x an analogous proposition which
strengthens a result of Wong (see 2.6.2 and §2.7). This analog then
leads to a recursion formula (3.1.1) for the Brauer characters
afforded by the projective indecomposable modules for G(m) (m<w); the
formula generalizes one given earlier by Chastkofsky and Feit in their
work on SL(3,2m). Finally, a "twisted" product formula (3.3.1)
resembling 1.2.1 is obtained for a class of projective indecomposable
characters and, by way of illustration, the character degrees are given
for a few low rank groups (see §3.5).

This paper represents a portion of the author’s Ph.D. thesis done
at the University of Illinois - Urbana under the direction of Professor
Michio Suzuki. The author gratefully acknowledges Professor Suzuki’s

guidance and encouragement during the preparation of the thesis.



2. TENSOR PRODUCTS OF G-MODULES
Recall that m is fixed (1<m<®) and G=G(m). Although most of
what we do depends on m, we will usually make no explicit reference
to it in the notation. Occasionally, we will need to work with both G

()

and G simultaneously; at those times, to avoid ambiguity, the

(o)

notation associated with G will bear the superscript (®). Also,
at times our arguments will need to be altered slightly to handle the
case m=w, If a required adjustment is not obvious, it will be

indicated.

2.1 The Grothendieck Algebra G

Let G be the Grothendieck algebra over the field € of complex

numbers of the category of G-modules and let denote the element of

"M
G associated with the module M. If m<x, we view by as the Brauer
character afforded by M and thus identify G with the C-algebra of
class functions on the p-regular classes of G with values in C.
Instead of working exclusively with characters, we have introduced the
Grothendieck algebra in order to simul taneously handle the case m=w.

For convenience, we will write Pr(A) simply as 2 (AEAq). As
a Z-module, G 1is free with basis {pAIAeAq}, the elements of which
we will call irreducible. Each element ¢ of G can be written

uniquely (up to order) as a Z-linear combination of irreducibles: p =

y N (aA € Z). We call Y ay the length of  (written
AeA
a



length(p)) and ay the multiplicity of 2 in p (written

mult(@A,w)). If mult(pA,p‘) < mult(@A,w) for all A € Aq, we say
that ¢’ 1is a constituent of ¢ and we write ¢’ C p.

Note that if M 1is a G-module and if we write oy = y aypy, then
each ay is nonnegative since ay is just the number of times that
M(A) appears as a composition factor of M. Hence, in this case
length(wM) is positive and equals the length of a composition series

of M.

2.2 The Sets A" and Ag.
Ol
Let A" = e Y. (weak direct sum if m=w), where Y., is a copy
oo j
of A. We view Yj as a subgroup of A" and denote by Lj A Yj C

A" and Wj AT Yj [« Am, the natural injection and projection,

respectively. Also, when convenient we view A" as a subset of A% in
the natural way.
Let J={(i,j)[1<i<¥4, 0<j<m}, and for (i,j) € J, set

Aij = Lj(Ai). Then {Aijl(i,j) € J} is a Z-basis for A" and, with

respect to this basis, A™ can be viewed as the set of {£xm-matrices

over Z (eventually zero matrices if m=w).

Set aij = Lj(ai) and nij = pAij - Ai(j+1) (viewing second
subscripts in Z/mZ if m<x so that Ai(j+1) is always defined). 1If
we set U = y Z+ai. and % = ¥ Z'k.., we obtain a partial

(i,j)ed ] (i,j)ed

order < on A" by taking P = VU + % as the positive set and

’

declaring x' < x if x - x' € P. The relation is clearly reflexive



and transitive so we need only prove antisymmetry. We require two

lemmas; the proof of the first is outlined in [7], p. 72.

2.2.1 LEMMA. Each Ai is of the form Y qijaj’ where all q5; are
i

positive rational numbers.

2.2.2 LEMMA. If Y a..a.. +3Db

: = -y c..A with a,.,b..,c.. €
1) 1] 1]

ijﬂij ij ij7713’ 1)

+ ..
Z", then aij = bij = cij =0 for all (i,j) e d.

Proof. Apply the homomorphism (Aij — Ai) - A" — A to both

sides of the equation to get Z(Zaij)ai = X6) (—cij - bij(p - 1)) Ay
1] 1]

By 2.2.1, the right hand side is a linear combination of the ai’s with
nonpositive coefficients. Since {ai} is linearly independent, the

a..’s must all be zero. Now {Ai} is also linearly independent, so

the b..’s and c¢..’s are also all zero. []
1] 1]

If x<y and y<x (x,y € Am), then y-x and x-y are both in P
and (y-x) + (x-y) = 0. 2.2.2 now implies that x=y and thus < is

antisymmetric.

m-1
Let AE denote Y

Lj(Ap) (which can be viewed, relative to the
j=0

basis {Aij} of A", as the set of #xm-matrices (aij) over Z'© with

0 < aij < p-1). The map wt : Aij — pJ/\i defines a bijection of AE

onto Aq, the inverse being the map which sends aiAi € Aq to




_ i o oA .
z aiinj’ where a, = E aijp is the p-adic expansion of a;.

Therefore, since Aq indexes the irreducible modules, so does AR If

X € Ag, we write oy for Pt (x) and note that {pxlx € AE} is a
Z-basis for G.

The following theorem is practically a restatement of Steinberg’s
tensor product theorem (1.2.1) in the new notation. (We lose
information in passing from modules to elements of the Grothendieck

algebra, of course.)

m-1
2.2.3 THEOREM. If xeAI;, then v =]

© .
7. (%)
=0 7j

Proof. Write Wj(X) = Lj(uj) with B € Ap. Then wt(x) =

- 3 _ - -
wt (Y Lj(uj)) =y0p Hys S0 that @ = ¢ )= e io=

P

1 th(Lj(#j)) =] @Lj(#j) =] pwj(x), the second equality from

1.2.1. 0

2.3 The Monoid X%

m-1
Set B, = U Lj(Ap) and let X denote the free abelian monoid on
j=0

the set B = BO\{O}. Thus, X can be thought of as the multiplicative
monoid consisting of formal products X X, X (Xi € B), with
X ()% (2)  Fo(n) = X1%gXp for any permutation o of {1,...,n}

and with multiplication given by juxtaposition. We view BO as a

subset of X in the natural way (identifying O € B, with 1 € %).



()

When convenient, we also view X as a subset of X (see the first

paragraph of this chapter for notation).

Let x = X X,...X € x (xi € B). Maps which were defined earlier

give rise to induced homomorphisms on %X as follows:

7. 1 x =] Wj(Xi) €%, wt:xmr ) wt(x) € A" and o = I e, €G.
i i i

We also define a homomorphism % - (AD)™ by x— x =Y x..
i

Let len(x) = n and set ht(x) = max{len(wj(x))lo < j < m}. The

map X > X sets up a one—to-one correspondence between the set of
elements in X of height at most 1 and the set Az; we identify

these sets in the sequel. (Note that this identification causes no

ambiguity with regard to the maps on X and Ag which bear the same

name. For instance, that by is the same element of G whether we

view X in A? or in X 1is the reformulation of Steinberg’s tensor

product theorem given in 2.2.3.)

Let Fr:G - G be the homomorphism induced by M +> Fr(M) (M,

G-module) and let Res:G(m)

(@)

- G be the homomorphism induced by M —
M|G (M, G " '-module). We define homomorphisms on the set X which
are related to these and to do so we use the fact that each function f
from B into a monoid Y induces a unique homomorphism from X into
Y which extends f. Let fr : ¥ 2 X be the homomorphism induced by
Lj(p) > Lj+1(u) (subscripts in Z/mZ if m < ®) and let

(o)

res @ X% - X be the homomorphism induced by Lj(u) — Lj(p) where

j +— 7 is the canonical map Z - Z/mZ if m < ® and the identity

Z~->Z if m= ®.



2.3.1 LEMMA.
(i) For x € X we have Fr(px) = Per(x)"

()

(ii) For x €% 2

we have Res(gox res(x)

Proof. (i) Since Fr and fr preserve products, we may assume

that x € B, say x=¢.(u) (pedA). If j<m-1, then Fr(p . )
J p pJ“

= wwt(fr(x))’ while, if m < ®, then Fr(p -1 ) = wu =
i p U

Put(fr(x)): Therefore, Frip ) =Frlp,, .y) = Fr(”pj“) = Put(fr(x)) =

Prr(x)"
(ii) Similarly, since Res and res preserve products, we may

assume that x € B, say x = Lj(u) (p € Ap). Write X, = Lo(u) and

observe that x = frJ(xO). By part (i) and the fact that ResoFr?d =

ReSoFrJ, we obtain Res(@iw)) = Res(w(m? ) = Res(w(wl

frJ(xo) frd(x )

p T = p =p T
frJ(XO) LE(M) res(x)

2.4 Decomposition of p (Preliminaries)

In this section, we begin to address the problem of decomposing
Py {(x € ¥) into a sum of elements of the form @y (y € AE). As
{¢X|X € ¥} equals the submonoid of the multiplicative monoid G\{0}
generated by {wAIA € Aq}, what we are really investigating are the

composition factors of a tensor product of irreducible modules.
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) _ o (e0) ()
For 0 < j<m let Aj = {(a,b) € Wj(X) X Ap | P, S P, }.

(An element of Aj corresponds to a choice of a composition factor in

(o)

a tensor product of irreducible G ' '-modules with restricted highest
weights, each module twisted by Frl.)
The map fr acts on the elements of |[J Aj componentwise. The

following lemma is clear.

2.4.1 LEMMA. A, = frJ'(AO) for 0 < j < m.

2.4.2 DEFINITIONS. For ¢ = (a,b) € Aj (0 < jO <m), let
0

J
v(¢) = 5 (p O(wt(a) - wt(b))) €V,
0
¥ © ® ke
h(¢) = 3 (3 (3 byp 37 k) €%, where b=3b. A
i=1 j=j, k=j+l 1 1) 1j71)

(second subscript of nij viewed in Z/mZ if m < ®), and

mult(¢) = mult(@ém),pgm)).

It is clear that h(¢) is in ¥H. We will show that v(¢) is in V.
i
0

By 2.4.1, ¢ = fr (go) for some $o = (ao,bo) € Ao‘ Now, 1.2.2

implies wt(ao) - wt(bo) = a€) Z+ai. So wt(a) - wt(b) =

] j
p 0(wt(ao) - wt(bo)) =p Oa, whence v(¢) = Lj (a) € V.
0

2.5 Some Graphs
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A directed graph T 1is a quadruple (VT,ET,o,t) where V = V’r

is a set of elements called vertices, E = E’r is a set of elements
called edges, and o and t are maps from E into V. For e € E,

we call o(e) the original vertex of e and t(e) the terminal

vertex of e. Let v,v' € V. A path ¢ (of length s) (from v to

v’') (with vertices Vi) is a sequence CPERRRL of edges satisfying
the following: o(el) =v=v, t(es) =v =v,, and t(ei) = o(ei+1)
=V, (1 <1< s). The essential length (e.1.(c)) of the path ¢ is

the number of edges e for which o(ei) # t(ei). The set of all

paths of length s from v to v’ is denoted by CE(V,V') and we

set CT(V,V') = Cz(v,v’). Finally, a relation LT is defined on V
s

by setting v’LTv if CT(V,V') Z¢ (i.e. if there exists a path from
v to v').

We define two particular directed graphs, T and 7Y'.

M vi=zx E - ((Cqnsy sy € AL and for e = (c) =

((aj’bj)) € ET, o(e) =[] a; and t(e) = ]| res(bj).

T T m-1
() v =%, E = {(,2)|¢e | Aj’ z € ¥} and for e =
j=0

(¢,z) = ((a,b),z) € ET’, o(le) = az and t(e) = res(b)z.

(If m = ®, the elements of ET are infinite sequences which are
eventually (1,1).)
Of the graphs T and 7', T will play the more important role

in what follows. The reason Y’ 1is introduced is that it is the
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easier of the two graphs to work with and, due to the following
observation, certain statements about T’ will carry over

automatically to statements about T.

2.5.1 LEMMA. If e = ((aj’bj)) is an edge in T, then
m-1 j-1
((aj,bj), k=¥+1 a, kgo res(b,))
(0 <j<m) is apathin T of length m from o(e) to t(e)

(empty products being 1). In particular, if x’LTx, then x'L7 x

(x,x' € %).

Proof. The proof of the first statement is straightforward. For
the second, we simply replace each edge of a path in T from x to

x’ with the path in T described above. 0

The path in T’ constructed from a path ¢ in T as in the
proof above will be called the path in T’ associated with c.

We extend the functions v, h and mult defined in 2.4.2: Let
the values on (¢,z) € ET' be those on ¢; for a path ¢’ = e
in T' set v(c¢') =) v(e;), h(c’) = y h(e;) and mult(c’) =
1 mult(ei); and finally, define the values of these functions on a
path ¢ in T to be those on the path in T’ associated with «c.

Next, we investigate properties of the relations LT and LT .

2.5.2 LEMMA. Ler Xx,x’' € ¥ and assume X € A?. If X'LT x (resp.

x’LTX), then X' = X.
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Proof. If e = ((a,b),z) is an edge in T’ with az = o(e) = X,

then, since ht(x)

IA

1, we must have a € AE, whence b = a and
t(e) = res{b)z = az = x. The statement about T now follows from

2.5.1. [1

We need a general technical lemma.

2.5.3 LEMMA. Ler X, i=20,1,2,..., be elements of an arbitrary
Z-module and set Yy = PX; - X - If be Z"  has p-adic expansion
© .
b= Y b.p’ and if we set ¢_=b-b and c¢. =-b,, j >0, then
j=0 J 0 0 J J
0 © 0 .
~-j=1
Z ijj = Z ( Z bkka ) V..
j=0 i=0  k=j+1 ]

Proof. We compare coefficients of xj on both sides of the

equation. If j > 0, this coefficient is cj on the left and

we get

)

x k=i-1 X k-3
pY b h - ¥ bp ) =-b. onthe right. If j =0
k=j+1 k=] J

[+4]
¢ on the left and p 3 bp“ ' =b-b_ on the right. [
0 kel k 0

Define fr: A" - A" by A.. — A.,. (second subscript in
ij i(j+1)

Z/nZ if m < o and Tes: A » A" by Aij — Aif .

2.5.4 LEMMA. If ¢ is a path in Y (resp. T) from x to x'
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(x,x' € ¥), then X - x' = h(c) + v(e). 1In particular, x'LT X

(resp. X'LTX) implies X' < X.

Proof. Because of the way h and v are defined on paths, we

may assume ¢ 1is of length 1, that is, ¢ 1is an edge ((a,b),z) in

’

T from x to x’. Furthermore, since x +— X is a homomorphism, we

i

have X - x' = (a + z) (res(b) + z) = a - res(b), so we may as well

assume X = a and x’ res(b) (i.e. z =1).

Now, ¢ = (a,b) € Aj for some j ; we first assume jp =0 1In
0

this case, 2.4.2 reduces to v(¢) = a - Lo(wt(b)). Upon writing

- _ _ j
b =) biinj and wt(b) =} biAi’ we have b, = ? p bij so that, by

2.5.3, we obtain

a-b - v(¢)

to(wt(b)) - b = ? b.As, - izj biinj

Z ® o .
Y (3 (3 bt k@,
=1 jZ0 k=j+1 !

Applying Tes to both sides and using the fact that res(b) = res(b) =
Tes(b) we get x - x' = a - res(b) = h(¢) + v(¢) = h(e) + v(e).

It is a straightforward exercise to show that fr commutes with
v, h, res and x X. Therefore, in view of 2.4.1, the general case
follows from the special case.

Once again, the statement about T now follows from 2.5.1. 0

2.5.5 LEMMA. There exists a map f from X into a well-ordered set

(I,<) having the property that if ((a,b),z) is an edge in T’ from
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!

X to x', then f(x') < f(x) with strict inequality if len(a)
(= ht(a)) > 1. Thus, if X'LTX, then f(x') < f(X) with strict

inequality if ht(x) > 1.

Proof. Define vol : A" > Z by ¥ aiinj -y a5 and let vol:

+

¥ > Z be the induced homomorphism [] X, = ) vol(x,) (x; € B).

For x € ¥, set f(x) = (length(wx),len(x) +vol(x)) e ¥ x z¥ =:

I. I 1is well-ordered under the usual lexicographic ordering < :

[

(u,v) < (u’,v’) if u<u' or u=u and v <v',

p(w)’ we

To prove the first statement, note that since @ém) SN

have P = Res(wéw)p;m)) C Res(péw)pim)) =P, SO that length(@x,) <

length(@x).

Assume now that length(wx,) = length(wx). Then, we must have

(@) _ () . _ . ()  _
o, =¥, . If wewrite a = Il a;, with a, €B, then Pt (b) =
11 @éfza y SO that the second statement of 1.2.2 implies wt(b) = )

i

wt(ai) = wt(a). Thus v(¢) = 0 where ¢ = (a,b).

We need to show that len(x’) + vol(x’) < len(x) + vol(x) with
strict inequality in case 1len(a) > 1. For this, we may assume X = a
and X' = res(b) (i.e., z =1) since len and vol are homomor-
phisms. We also may assume x # 1, for x =1 implies x' =1 and
both sides of the inequality become zero. In particular, we have
len(x) > 1.

Now, ¢ € Aj for some O < jo < m. Consider the case j0 = 0.
0

2.5.4 gives
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vol(x) - vol(x’') = vol(x - x') = vol(h(¢))

i
2 (1 bi(yep)) -1,

0 i=1

I8

J

where b = Y biinj' Since len(x’') = len(b) = I{jlbij # 0 for some
i}], we get wvol(x) - vol(x’') > (len(x’) - 1)(p - 1) > len(x’) - 1
whence len(x) + vol(x) > len(x’') + vol(x') - 1 + len(x) > len(x') +
vol(x’) with the last inequality being strict if 1len(a) = len(x) > 1.

Since lenofr = len and volofr = vol, the general case follows
from the special case and 2.4.1.

For the second statement, first observe that we may assume there
is an edge in YT from x to x’. We can then use the first statement

and 2.5.1 noting that ht(x) > 1 implies len(aj) > 1 for some Jj,

in the notation of that lemma. 0

2.5.6 LEMMA. Let x,x' € £ and assume X = X' € A?. Then, there is

4 ’

no edge in T from x to X unless X' =X, iIn which case there is§

a unique such edge e and mult(e) = 1.

Proof. We first prove that if e

((a,b),z) 1is an edge of some

path in T from x to X', then b=a. Let x = XgoooosXg = X' be
the vertices of some path in T'. By 2.5.4, ;0 s §; Yo ;S.
Since §6 = §g, antisymmetry of < forces the equalities ;o = ;1 =

. = §g. We may therefore assume that s =1 and that e 1is an edge

’

from X to x’'. Now, a + z =% = x' = res(b) + z, so that
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res(b) = res(b). But 2.5.4 (with m = ®) implies a - b =
()

o |
1

TEP Since Tres(a) = a = res(b) we have res(r) = 0. Thus

2.2.2 implies that 7 = 0, whence b = b =a.

Returning to the proof of the lemma, we note that e =

((wj(x),wj(x))) (0 < j <m) is an edge in T from [] Wj(X) =x to

11 res(wj(x)) =[] Wj(§) = x and mult(e) = 1. Indeed, since x is in

Ag, s0 is wj(E) = Wj(x). Writing Wj(x) =] X, (xi € B), we have

Wt(T(x)) = we(F x;) = Twt(xg). Thus, mult(go———fr?zx) AL

() ()
mult(@z wt(xi)’ 1 @wt(xj)) =1 (1.2.2).

Conversely, any edge from x to X’ must be of this form. To
see this, let e = ((aj,bj)) be an arbitrary such edge. Then

x =[] a., so applying T we find that a;y = Wj(X). By 2.5.1 and the
first paragraph, we then have bj =a, = Wj(X). 1

J

2.5.7 COROLLARY. Let X € ¥ and assume X € AE. Then, for each
positive integer s, there is a unique path ¢ in Y of length s

from x to x, and mult(e) = 1.

Proof. If x = XX o, X = x are the vertices of a path in 7T
from x to x, then Eﬁ = §1 = ... = ;S (same proof as in 2.5.6).
Using 2.5.6 repeatedly, we find that X = X, =X, = .= X, that for
each 1 (1 <1 < s) there is a unique edge e in T from Xs to

Xs, and that mult(ei) = 1. The corollary follows. [J
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2.6 Decomposition of by

The next theorem is an expression for the multiplicity of an
irreducible element of G as a constituent in a product of
irreducibles (see opening paragraph of section 2.4).

For x,x' € ¥, set e.l.(x,x’) = lub {e.1.(c)]|c € CT(x,x’)}.

2.6.1 THEOREM. Ler x € X and x' € AE. Then e.l.(x,x') < ® and
for each positive integer s > e.l.(X,Xx') we have
mult(wx,,px) = y mult(c)

ceCZ(x,x’)

(an empty sum being interpreted as zero).

Proof. We proceed by (transfinite) induction on f{x) where f

is as in 2.5.5. First assume ht(x) < 1. Then, x € Ag and

6x’x (Kronecker delta). In this case e.l(xXx,Xx’') equals

mult(px,wx)

zero if x’

x and equals -® otherwise (2.5.2), so the theorem
follows from 2.5.7.

Now assume ht(x) > 1. Then, since x =[] rj(x), we obtain

(co) ) B (@) (@) (@)
1_] fro(x) 7 1€ 2 o mltley fr(x)) Oy
J Y P
m-1
= 3 CI maneel®, 7(r°°2x))) H oy
(yj) j=0 7] =0 7]
where the sum is over all tuples (yo,...,ym_l) with yj € Az.

Applying Res and using the definitions, we get
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.= ¥ y mult(e) ¢_...
* xex T X
ceCI(x,x")
Hence,
mult(p ,,p ) = Z y malt(c) malt(p ,,p ).
x"ex T "
ceCl(x,x )

Note that if Cf(x,x") # ¢, then f(x") < f(x) by 2.5.5.

(o)

Since an element of G can have only finitely many irreducible
constituents, it follows that there are only finitely many edges in T
with X as an original vertex, since each is of the form ((Wj(x),bj))

(0) ()

with by S @ (%) (0 < j <m). This, together with the induction
] J

hypothesis, implies that s’ := lub {e.l.(x",x")|x" € X, Cf(x,x") #z ¢}
< ©. We also have that e.1.(x,x') -1 =5s8">e.1.(x",x") for

each x" € ¥ with C?(x,x") # ¢. (For the equality, we have used the
fact that x" # x since, for instance, f(x") < f(x)). Thus
e.1.(x,x') <o and, by the induction hypothesis,

mult(@x,,wx) = 2 y y mult(c) mult(e’)
x"ex cECl(x,x”) c’ecz_l(x",x')

= ¥ mult(c),
cEC?(x,x')

as desired. 0

2.6.2 COOROLLARY. If b Cop

(x' € Am, X € %), then X' < X.
X P

Proof. By 2.6.1, x’LTx, so 2.5.4 implies x' = x’ < x. [
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2.6.3 COROLLARY. If x € X and X € Ag, then mult(p—p ) = 1.

Proof. Use 2.6.1 and 2.5.7. 0

We record another corollary for use in the next chapter. We need
some notation. Let B = {aij,ﬁijl(i,j) € J} (= the set of generators
of P) and for 7 € P, set B(r) = {f € B|r - B € P}. Note that
B(r) is the set of all B € B which can possibly appear as a summand

in an expression of 7 as a sum of elements of 8.

2.6.4 COROLLARY. Assume m < ®. Let x € X and X' € A? with

x' <x. If K5 (me1) ¢ B(x - x') for each i (1 <1i < £), then

(o) gD)((co))'

mult(px,,px) = mult(wx, ,

Proof. The inequality mult(wx,,@x) > mult(pi?),piw)) is clear,
cL (0) () .
so it is enough to prove that mult(wx,,¢x) < mult(wx, Py ). In view

of 2.6.1 it suffices to show that every path in T from X to X’ 1is
p(®)

’

also a path in from x to X',

Let e = (gj) = ((aj,bj)) be an edge of a path in T from x to
x'. Fix 0 < jo <m. From 2.4.2 we have
£ © ® Keio1
hi¢, )= Y (Y () b, p 0 1) k..),

j . L . ik ij

0 i=1 =i, k=j+1
where b. =Y b..A... If b,. were nonzero for some pair (i,j)

] 1] 13 1]
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with j > m, then Ki(m—l) would appear with a nonzero coefficient in
this sum. But this would contradict the assumption that

Ri(m-1) ¢ B(x — x') in light of 2.5.4. Hence bij = 0 for all pairs

(i,j) with j > m. Since jo was arbitrary, this shows that bj € A?

for each j. Thus, t(e) =]] res(bj) = ] bj = t(w)(e). Since we

always have o(e) = o(w)(e), we have shown that e is an edge in
T(m) from o(e) to t(e) and this completes the proof. []
2.7 Remarks

The second corollary (2.6.3) is nothing new; for m = ®, it
follows easily from 1.2.2, and for m < ®, it was proved in Wong [12]
(in the language of weights and using quite different methods, of
course) .

The first corollary (2.6.2) with m = @ generalizes the first
statement in 1.2.2, and with m < ® generalizes a result of Wong. We

will prove these assertions. In order to state Wong’s result, we need

to introduce some terminology. The set {ai, 1<

i < £} of simple
roots forms an R-basis for the space E =} Rai. A total ordering <
(called the lexicographic ordering) is imposed on E by declaring
p=Yy a 0. (ai € R) to be positive if the first nonzero a; is

positive.

2.7.1 PROPOSITION (Wong [12]). Assume m < ®. If Py S 1 »
i

(A,ui € Aq), then A <) Hy -
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We need the following observations.

2.7.2 LEMMA.
(i)  wtGh) = (g - 1) AT if m<® and wt(%(m)) =0, and
(ii) wt(V) =) Z+ai (1 <m< .

Proof. (i) If m = ®, wt sends each K to 0; if m < o,

wt sends Kij (0 <j<m1l) to 0 and k.

i (m=1) to (g - 1) Ai' In

either case, ¥ =Y Z+mij so the result follows.

(ii) Obvious. []

Now start with the assumption vy € I » (A,ui € Aq). Since wt

1

maps Az onto Aq we have A = wt(x’) and By o= wt(xi) for some

m :
X,X; € Ap. Setting x =[] x;, wehave 9, =p .y =9 C

11 pwt(x y = 11 Py = ¥g- Therefore, 2.6.2 implies x’ < X, whence
i i

x-x'" €P=%+VU. So, Y py - A= wt(x) - wt(x’) € wt(3)

+ wt(V) and, in view of 2.7.2, this gives the first statement in 1.2.2
when m = o and 2.7.1 when m < ®. (The elements of ) Z+ai are
obviously positive with respect to the lexicographic order and those of

(g-1)A* are so by 2.2.1.)
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3. PROJECTIVE INDECOMPOSABLE CHARACTERS

For this chapter, we assume m < ® and consider only the finite

(m).

group G =G (The standard results about Brauer characters can be

found in Feit [5].)

3.1 A Recursion Formula

By the Krull-Schmidt theorem, the group ring KG, considered as a
G-module via the regular representation, decomposes into a direct sum
of projective indecomposable modules. Each projective indecomposable
module has a unique irredupible quotient; this sets up a one-to-one
correspondence between the isomorphism classes of projective
indecomposable modules and the isomorphism classes of irreducible
modules. For x € AE we let @X (or th(x)) denote the Brauer
character afforded by the projective indecomposable module the
irreducible quotient of which affords P -

The Steinberg character is denoted I'; it is the character
afforded by the unique projective irreducible module. If we write ~« =
) (p—l)Aij, then T = @7 =0,

The symbol ( , ) denotes the usual inner product of complex-

valued functions defined on the set Greg of p-regular elements of

1 -1 o
G: (f = f . It tisf [i] =6 K k
(f,g) TaT seé (s )gl(s) satisfies ( X,wy) Xy (Kronecker
Teg

delta) and (fg,h) = (f,gh), where bar signifies complex conjugation.

The following theorem generalizes a result of Chastkofsky and Feit
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in their work on SL(3,2™) (see [3], Lemma 7.1).

3.1.1 THEOREM. Let x,w € AE and z € ¥ and assume z = W - X.

Then

o =0 p - .

y#X

Proof. Since @W is the character afforded by a projective

module, @QEZ is as well. Thus, Qwaé equals a sum of projective
indecomposable characters. Consequently, we have

W T ygA? (O 9308y = 8+ x<§€AE Cubafy)%

Y#X

since 0 # (@w,pzpy) = mult(@w,wzwy) implies y-x=y+z -wev?

(2.6.2) and mult(pw,wzwx) =1 (2.6.3). [

3.1.2 COROLLARY. Let x € A?. Then

¢ =Tp, - 3 (T

m )2
<yeA
X<y€E D

PrxPy Ny

Y#£X

An immediate consequence of this corollary is the fact proved in
Ballard [1] that the Steinberg character I divides every projective
indecomposable character @X. (This is obvious if x 1is maximal,
since in this case the sum in 3.1.2 is empty. For the other x’s we

can use induction down the partial order of AE.) Since the projective
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indecomposable characters comprise a basis for the vector space of
complex-valued functions defined on the p-regular classes of G (see
Feit [5], p. 146), it follows that T never vanishes. We will find it

~

convenient to use the notation Qx = QXT_I.

~

3.2 A Factorization of QX

For a subset I of J, denote by @, the homomorphism A" 5> AT

I
which fixes Aij for (i,j) € I and which sends Aij to 0 for

(i,j) ¢ I, and set B(I) =B [] WI(Am). (Recall that B =
{aij,njjl(i,j) e J}.)
Let g = {J ,...,JS} be a collection of subsets of J. For X €

Am, define
p
£(x,9) = {y € A‘p“|y »x and Aly - x) ¢ U BUIP}.

(Recall that B(r) = {8 € B|7 - e P}.) If g contains a single set

Jl, write £(x,d) simply as f(x,Jl) and set &(x) = £(x,d)

(= {y € A‘;ly b x}).

3.2.1 LEMMA. Let g = {Jk} be a collection of subsets of J, let X

€ Aﬁ and assume £(x) = £(x,9). If x<y¢€ Ag, then &(y) = €(y,9).

Proof. Let z € £(y). By transitivity of <, we have 1z ! X,
whence p(z - x) C | B(Jk). But g8(z -x) =8z -y +y-x)Dpz-

y), so z € £(y,9). Thus, &(y) € €(y,9). The other inclusion always
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holds. O

A subset I of J 1is called a vertical subset if (i,j) € I

implies (i’,j) € I for each 1 < i’ < £. A vertical partition of J

is a partition consisting of vertical subsets (i.e. a collection {Jk}

where Jk is a vertical subset of J, | Jk =dJ and Jk N Jk' = ¢

for k # k').

3.2.2 LEMMA. Le: 9 = {Jl""’Js} be a vertical parrition of J and

let x € AE. For every y € &(y - x,9) we have

r, = It , )
(Logey) E mu (¢7k kawyk

where T Xk and Yy are the images under Ty of v, X and Yy,
k

respectively.

Proof. Because g 1is a vertical partition, it follows that x =
Il Xy and y =] Yy Therefore, since x p, 1s a homomorphism, we
have
oo =e.e. =1 n mult(wz,w . ) e ).
k k

zeAp R Ik Z

Rearranging the product and sum, we obtain

p o = Yy (multle ,o_ v )¢ ),
Yy (z,) k Zr *x Yk

where the sum is over all s-tuples (zl,...,zs) with z, € AE.

Therefore,
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(P,wxwy) = (%k)[( Q mult(wzk,ka@yk)) (T, g @Zk)].

Let (Zk) be a fixed tuple for which the corresponding term in the sum

is nonzero. Then 2.6.2 implies

X * Y T Z =Ty € P for each k, and (3.2.3)
¥ zy — 7= TE€EP. (8.2.4)

Adding equations 3.2.3 and 3.2.4 we obtain

x+y-—-’y=ETk+7', (325)
Now Bx+y-7~)cl B(Ji) by assumption, so that ﬂ(Tk) C
U B(Ji) for each k, as well. But this implies that 75 (Tk) € P
i
for each i and k. Thus, if 1 # k, an application of Ty to

1

. m
3.2.3 gives —WJi(zk) = in(Tk) € —Ap = {0} (2.2.2). Thus, 7

k

and z, are in Ty (A™) for each k. From 3.2.4, we then have
k

N+ T =) z, € AE, so that 7 € (AE - N?P= —AE P=1{0} C(again
by 2.2.2). Therefore, equation 3.2.4 becomes Y zp =7 and, applying

WJk, we find that z, =~  for each k. Finally, || wzk) =

(P,wv) =1. [

3.2.6 COROLLARY. Let 1 be a vertical subset of dJ, let X € A?,

and assume that WJ\I(X) = WJ\I(v). If ye &(x,1), then
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(T,o, p. ) =mltlp_,p . )
y-x"y Yo' o~%o Yo

where 70, h¢ and yO are the images under WI of 7, X and Yy,

0

respectively.

Proof. We apply the previous lemma with the partition {I,J\I}

and note that since B(y - x) € B(I), we must have -x) =0,

WJ\I(Y
whence WJ\I(y) = WJ\I(X) = WJ\I(W). 0

3.2.7 COROLLARY. Let 1 be a vertical subset of J and let X € Ag.

Assume T

J\I(X) = WJ\I(V) and £(x) = &€(x,1). Then

¢ =9 - 3y mltlp ,p o) ®
x To7%0 x<yeAz To MW Fo Yo Y

yZX

where ., X and 'y are the images under %, of 7, X and vy,
0 0 0 I

respectively.
Proof. Use 3.2.6 and 3.1.2. []

3.2.8 DEFINITION. Let g = {Jk} be a vertical partition of J.

Denote by ©(g) the set of all x € Ag which satisfy

(i)  €(x) = £€(x,d) and

(ii) £(§k) = §(§k,Jk) for each k,

where ;k =7, (x) + 7

(7).
Iy

J\Jk
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For the remainder of this section, we fix a vertical partition g

and let the notation be as in 3.2.8.

3.2.9 LEMMA. Jf x € 6(g) and x <y € Aﬁ, then y € 6(9).

Proof. Condition (i) of 3.2.8 is handled by 3.2.1. Since §(x) =

£(x,9) we have By - x) clJ B(Jk). It follows that ;k - ;k =

WJk(y - X) € P so that Y b X) for each k (where Y = WJk(y) +

TINg (4)). Once again, 3.2.1 applies and condition (ii) of 3.2.8 is
k

met. 0

3.2.10. LEMMA. If x € O(9), then the function f : £(x) » X §(§k)
k

given by y — (;k), where ;k =7 (y) + TG (v), is a bijection.
k k

Proof. The proof of 3.2.9 shows that ;k € 6(;k) so that f

maps into X f(;k). Define g : X 5(;k) > £(x) Dby (zk) — oz o=

y WJk(zk). Since z, € f(;k) = f(;k,Jk), we have ﬂ(zk - ;k) c B(Jk),

~ n ~
so that z, - x €7 N WJk(A ). Thus z -x =) 7er(zk -x ) €P, and

z ¥ x. Clearly f and g are inverses of each other. 0

~

3.2.11 THEOREM. If x € O(3), then @ =]| 3
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Proof. We proceed by induction down the partial order of AE. If
x is maximal, then ¢£(x) = {x}. 3.2.10 then implies that E(;k) =

{;k} for each k. Applying 3.1.2, we have

6 = = = 6__’
x = Pyex = 1 Oy x, Il

where Tk and X, are the images under =

respectively.

If x 1is not maximal, then 3.1.2 and 3.2.2 give

d =p - Y ([[multlp ,p 0. NG,
X X x<yeA§ k T TR Yk Y

yZX

where e X and Y, are the images under 7« of 7, x and VY,

Iy

respectively. By 3.2.9, each y in the sum lies in ©(g), so the
induction hypothesis and 3.2.10 imply

) ) + 3.,

k Xy

d =p - (f] mule( , -~
x = Prex T 2 E n N O y
(y,) k k
where the sum is over all (;k) € X f(;k). (The last term occurs
because we have included an extra term in the summation; the

coefficient of this added term is one by 2.6.3.) Rearranging the sum

and product, we obtain

3 = 7 -1 [ D) mult(p_ o 0. ) 3 } + ] o,
x0T x xk<yeA§ R D s R k

where Yy =7 (y). Finally, using 3.2.7, we get
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as desired. O

3.3 Twisted Products

Fix a tuple (jo,...,js) (1 < s <m) of integers with 0 = <

Jo

< j. =m. We define a vertical partition ¢

<< . {Jk} of

5-1

IA

J associated with this tuple by setting J, = {(i,j) € Jljk j <

} (0<k<s). If =k for each k, then g 1is called the

Tk+1 Iy

column partition and is denoted Sc.

Set 5k =y, Iy and for 1 <k <m, define I = {(i,j) €
J[O < j < k}. Before stating the next result, which is a corollary of
3.2.11, we remark that x € Aﬁ can be expressed (uniquely) in the form

Ik m m-Jy
Y fr (yk), where Y € Tp (Ap). (Indeed, Y = fr (WJ (x)).)

5k k

3.3.1. COROLLARY. Assume x € ©(39) and write X in the form

s-1 J
) fr (yk with y, € Ty (Ag). Then @X = ] k(@ ), where

6k k=0 Yy

~

-~

Y = Vi * WJ\Ié (v). Furthermore, f(yk) = f(yk,Iék) for each k.

Proof. First note that if @ 1is a projective indecomposable
module with irreducible quotient M, then Fr(Q) is a projective
indecomposable module with irreducible quotient Fr(M). Thus, from

2.3.1 we get that Fr(@ ) = er( ) for any z € A?. Next, we observe
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- jk jk -
that X = WJk(x) + WJ\Jk(W) = fr (yk + WJ\15 (y)) = fr (yk). The
k

twisted product formula now follows from 3.2.11.

For the second statement, suppose z € E(;k). If z - ;k =p+T

J
with g € 6\8(16 ) and 7 € P, then applying fr k we get
k

k

Ix ~ Ik J Ik
fr “(z) - x, = fr (B) + fr (7). Since fr (B8) € B\B(Jk) and

j j ~ -
fr ®(r) e fr "(P) = P, this contradicts that €(x) = £(x,J}).

Hence, E(;k) c E(;k’lé ). Since the other inclusion always holds, we
k

have equality. [

3.3.2 COROLLARY. Assume m > 1. Let X € 9(80) and write

- m-1 .
X =) t.(u, . €A ). Then & = Frd , Wwhe €A
Yoeglpg) (g e A noe J-Eo wj) re ¥, weh)
is the (virtual) character given recursively (down the partial order in

Ap) by

-7 - (0) (@) (o)
Yy = Poy ;MzAp mult(p ™ 0,2y ) ¥y

AZu

- d
where o0 =) (p—l)Ai. In particular, @X(l) = ]I ¢ (1) #’ where
ueAp o

d = I{ilu. = wl.
» I{JIMJ #} ]

Proof. By 3.3.1, éx =[] Fr (&_ ), where y. = Lo(pj) +

J
Y
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-~

T (4). We will show that we can replace & with the indicated
1

7]
character.

Let A= {y(w := ¢ (B + WJ\Il(v) | ue Ap and £(y(u)) =

f(y(u),ll)}. We first show that f : y = y(u) — u defines an
injection A - Ap which sends &(y) onto {A € Ap[A v u}. The

injection claim is clear. If =z ¢ £(y), then by 3.2.1, £(z) =

E(z,Il). Also, z -y is of the form ) a.a. (ai € Z') since the

a 3

jo 5 are the only elements of B which lie in 7«

1 (A"). (Here we
1

have used the assumption m > 1.) For one thing, this shows that

WJ\II(Z) = WJ\Il(y) = WJ\II(W), implying that z € A, say z = y(A)

(A e Ap). We also get that A - u = wt(LO(A) - Lo(u)) = wt(z - y) =

a.x., whence A % g and f maps £(y) into {A € A_|[A v u}.
11 p

Finally, if u < n € Ap, then 7 - u =Y biai (bi € Z), so that

y(n) - y(u) = LO(E b.a,) = ) b.a; € P and f maps £(y) onto {A e
b .

Alx > wd

~

Now, since each yj is in A (see last statement in 3.3.1), it

~

is enough to show that y = y(u) € A implies Qy = wu' For such a vy,

3.2.7 implies

3 =7p -y ! g (s.8.9)

Y Yo zef(y) Yo YoV %o
ZZy

where Yoo Yy and z, are the images under Ty of <+, vy and z,
1

respectively. (Note that for z ¥ y, we have ﬁ(vo =Y, *t Zy -~ 70) =
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Bz - y) C B(Il) = {aioll i <¥£}, so2.6.4 allows us to insert the

IA

superscripts (®).)
Assume y 1is maximal (in A). Then y is also maximal in Ag
since, as we have shown above, £(y) € A. The second paragraph also

implies that {A €A X+ u, A #pu) = 4. Th ® =p -
p { D" pl = ¢ us, @ ¢70_y0

Pwtly,-y,) T Yo-u T Y

Now if 'y 1is not maximal, we apply wt to all subscripts in

3.3.3 and use the second paragraph and induction down the partial order
of A to get

T - (o) (0) (00)
d = - 1t
y @U—H u<§eA mu (¢U ) wa_# Yy

dzp P

) ‘P}\:

which equals ¢u, as desired.

The formula for the degree 5X(1) follows immediately. B

3.4 A Sufficient Condition for Membership in 9(8c)

Throughout this section, we will be dealing only with the column
partition g = {J.}, where J,_ = {(i,j) € Jlj =k} (0<k<m). If
we let (cij) denote the Cartan matrix of V¥ and (dij) its inverse

transpose, then a; = Y €55 A, and Ai =Y djiaj' The next lemma is
i J

elementary.

3.4.1 LEMMA. If Y a,a; = ) bA, (a; b, €R), then a, = ? d. b,

for each 1i.
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For the remainder of this section we fix an #-tuple (ci) of

integers with 0 < ¢, < p.

3.4.2 DEFINITION. Let @ denote the following hypothesis:
(@1) Given Z-tuples (aj) and (bj) of nonnegative integers

with Y a; < Y bj’ there exists an 1 (1 < i < £) such that

% dij (aj - pbj) + pdii < 0, and
(@2) For any Z£-tuples (aj) and (bj) of nonnegative integers
with Y ay = ) bj # 0, there exists an i (1 < i < £) such that

? dij(aj - pbj + cj) < 0.

These rather odd conditions are given with an eye toward the proof
of 3.4.3. We will see in 3.4.10 that @ will be satisfied if, for
instance, (ci) = (0) and p 1is roughly the rank of ¥ or larger.

Let ¥ be the set of all ) yiAi € Ap such that ? dijyj <d;p

for each i (1 <i < 4).

3.4.3 THEOREM. Assume Q is satisfied. Letr x =) Lj(uj) (uj € Ap)

and set o0 =)y (p—l)Ai. If i €0 - Y for each j, and My =
0

% (p—l—ci))\i for some j , then x € 9(80).

Proof. Let z € £(x), and set 7 =2z - X € P. We need to show

first that g(r) c | B(Jk). We can write 7 in two ways:
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) ;%5 * ) bijmij =7 =) tiinj (3.4.4)

where aij’bij € Z* and tij € Z and the sums are over all (i,j) €

J. For any j (0 < j <m), we can apply Wj to 3.4.4 and get

% 8,%j = % (bi5 + by 5oy —0byi) Ay, (3.4.5)

(second subscripts viewed in Z/mZ) so that by 3.4.1, we have

- pb, .) (3.4.6)

a,, =y dik(tkj + bk,j—l

ij = ¢ kj

for each (i,j) € J.

If we write x = ) x..A.. (x.. € Z+), then .= Y X..A., so
2 1) 1] ( 1] uJ % 1) 1
that by assumption, % yiin € Y, where Yij = P - 1 - Xg5- Also,
) m
since 7=z - x € Ap - X, we have
tij <p-1- X5 = ¥y (3.4.7)

for each (i,j) € J.

We first show that ) bij =y bij’ for 0 < j,j’ <m. It is
i i

enough to show that Z b, jo1 2 ) bij for each j (viewing second
i ’ i

subscripts in Z/mZ). Suppose for some fixed j we have Y bi §-1 <
i ’
Y bij' Then by @1 of Definition 3.4.2, there exists an i for
i
which (using 3.4.6, 3.4.7 and the definition of Y)
335 = g dix Oy * Py jor ~ PPyy)

= (g djpVyy — Pdjy) + (E dip(by 5oy = Phyy) + pdyy) <0,
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where we have used that dij > 0 for each (i,j) by 2.2.1. Since

this contradicts that aij € Z+, we conclude that ? bij = ? bij’ for
0<3j,j’ <m.

We now prove that % bijo = 0. Assume otherwise. From 3.4.7 we
have tijo <p-1- Xijo = ¢y, 80O that by 3.4.6 and (2 of
Definition 3.4.2, there exists an i (1 < i < £) such that

aijo < g dik(ck + bk’jo—l - pbkjo) <0,
which is again a contradiction. Thus, Y b.. = 0. By the previous

i o
paragraph, Y bij =0 for each j and, as bij > 0, we have bij =
i
0 for each (i,j) € J. It follows that p(r) c |} B(Jk), whence

z € §(x,gc) and (i) of Definition 3.2.8 is met.
Next, we must show that 6(;k) = f(;k,Jk) for each k, where
X, =7, (X) +7
k Jk J\Jk

before, we can write 7' in two ways:

(v). Let z € E(;k) and set 7' =z - ;k € P. As

y ST ) bijnij =7 =3 tiinj (3.4.8)

where a!.,b:.
1]71)
Now, as we have already observed, each dij is positive, so in

ez, tij € Z and the sums are over all (i,j) € J.

particular, ¥ contains zero. Also, since (2 is satisfied, it is
satisfied if we replace (ci) with any other tuple (ci) where 0 <

c. < cs for each i (in particular, if each ci =0). It follows

’
1

that Xy satisfies the hypothesis of the theorem. Therefore, by what
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we have shown above, each b!. = 0. Applying « to 3.4.8, we
ij J\Jk

obtain

Yal.a,, = Yt

ek UH g 1T

For j # k, an argument similar to that leading to 3.4.7 gives tij <

p-1- xij =0 for each i, where X = ) Xiinj' Thus, by 2.2.2,
aij =0 for all j # k. This proves that g(7') C B(Jk) so that
5(§k) C §(§k,Jk) as required in (ii) of Definition 3.2.8. []

For the remainder of the section we consider assumptions on V¥, p

and (ci) which guarantee that @ 1is satisfied.

3.4.9 LEMMA. Let m. = min {d..} and M. = max {d..}.
i X ij i . ij
J J
(1) If pm, > Mi for each i, then Q1 holds.

(ii) 1If pm, > Mj for some i and (ci) = (0), then 2

holds.

Proof. (i) 1In the notation of 3.4.2, choose any i with bi #

0. Then Z dij(aj -~ pbj) + pdii = Z dija
J J

<M, Ya, -pm, Y b,

! ) ! j#i J

(Mi - pmi)(z bj - 1) <0.

. -p Y d..b, - pd..(b, - 1)
j jgi 1 ii i

- pmi(bi - 1) < Mi(Z bj -1) - pm, Y bj + pm, =

ii F i ith . > M., have d..(a. - pb, c.
(ii) For any i w pm, ;» We ha ? 1J( j p i + J)

< M, ) a; - pn; Y bj = (Mi - pmi) ) bj <0. [
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3.4.10 COROLLARY. @ is satisfied if (ci) = (0) and

p>4+1 if V= Al’ p>5 if ¥= Ei’
p >4 if V= BZ or C£’ p>3 if V= F,,
p>21 if V=D, p22 if ¥=6,.

To prove the corollary, one applies 3.4.9 to each root system. We
refer the reader to the table in Humphreys [7], p. 69, in which the
. -1 t .
matrices (cij) = (dij) are given.
Some of the examples in the next section are not covered by

3.4.9. VWe provide separate arguments for them below.

3.4.11 LEMMA. If V = A, and y c; < p-l, then G2 is satisfied.

Proof. If not, then, since d_ , = 41— and d - we

1] Z+1 i T 4+1
obtain for some £ and p the contradiction 0 < 2 dlj(aj + cj -
‘ j
b.) + Yd,.(a. + ¢. - pb.) = d.+d,.)(a. + ¢. = pb.) =) a. -
PP 2 ZJ( j i P 2 ( 1] AN i TP 2 i

J
) bj - (p-1) ), bj + Y ¢; < 0. [

3.4.12 LEMMA. If (¥, p, (ci)) = (A, 2, (0)), them Q@ is

3’
satisfied.

Proof. (2 1is handled by 3.4.11, so it suffices to show that Q1

is satisfied; to do this, we consider various cases. (Note that
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= N W
B W N

QN -
[ S

for type A3.)

(b1 # 0 and b3 = 0) In this case, 4(? dlj(aj - pbj) + pdll)
3(a, - 2b)) + 2(a, -2b) +a, +6<3 ) a; - 6b, - 4b, + 6 =3 Y a

4b - 2b -4b, +6 <3} ay - 4y bj +4<3Y a; - 4(y ay + 1) + 4
-y a; < 0, so that @1 is satisfied with i = 1.

(b1 =0 and b3 # 0) The matrix (dij) is symmetric, so an
argument similar to that in the previous case shows that Gl is
satisfied with i = 3.

(b1 # 0 and b3 Z0) If ? dlj(aj - pbj) + pd11 < 0, then
@1 holds with i =1, so assume otherwise. We have ) d3j(aj - pbj)
]

+ pd

a3 < y dlj(aj - pbj) +pd o+ ? dsj(aj - pbj) +pd,, = Y (dlj +

]
dsj) (aj - pbj) + pd
y a; - 2y bj +3< (¥ bj -1)-2% bj +3 =~y bj +2 <0, so that

nt pd33 =y (aj - pbj) + pd

11 T Pdgy =
Gl 1is satisfied with 1 = 3.

(b1 =0 and b3 = 0) Here @1 holds with i

I
[
]
7]

4(y dzj(aj - pbj) +pd,,) =2 +4(a, -2b) +2a, +8<4 y a; -
8 Y bj +8<4Y ay - 8( ¥ ay + 1) + 8 =-47Y a; < 0. 0O
3.5 Examples

Here, we illustrate the results of the previous sections by
computing the degrees of some projective indecomposable characters.
The formulas in (i), (ii), (v) and (vi) below have already appeared in

the literature and references are given,
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3.5.1 PROPOSITION. View X € AS as a matrix (see section 2.2) and
let #[c] denote the number of its columns which equal the column
vector [cl. For the indicated groups, we have the following:

(1) SL(2,pm), p arbitrary, m>1: If x #0, then @X(l) =

pm2a, where a =m - #[p-11 (cf. Srinivasan [10], p. 113).

(ii) SL(3,2m): If X has at least one column which equals

1 _ o3m.a,b _ .10 ! 0
[1], then @X(l) = 2767837, where a = #[O] and b = #{O} + #[1]

(cf. Chastkofsky and Feit [3], p. 136).

(iii) SL(3,8™: If x has no zero column and at least one

column which equals [g}, then @X(l) = 33m6a3b, where a = #{1] +

#[2] + #[i] and b = #[g} + #[g] + #[?] ¥ #[é].

(iv)  SL(4,2™): If x has no zero column and at least one

r+ 7

1
column which equals , then @X(l) = 26m12a6b4c, where a = #[0}

0

1
1
1
0 0 1 1 0
+#[O} +#{71}, b = #(0 and cz#[l} +#|:1}
1 0 1] 0 1

(v) G2(2m): If X has no zero column and at least one column
which equals [i], then @X(l) = 26m12a6b, where a = #[é] and b =

#[?] (cf. Cheng [41, p. 114).

(vi) G2(3m): If X has no column which equals [8}, [g], [é}

or [g] and at least one column which equals [g}, then @X(l) =

3%03621906¢  rere a = #{i], b = #[g] and ¢ = #[f} + #[é] (cf.

Cheng [4], p. 84).
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In each case, the restrictions on X are those appearing in 3.4.3;
they guarantee that x € 9(8c). We sketch the derivation of the
formula in (iv) and remark that the other derivations are similar.
(For further details, see [61.)

Assume G = SL(4,2m). In the following discussion, we identify
the set Ap with the set of integers i, 0 < i < 8 via alA1 + azAz

+ — a_ + 2a_ + 4a_.
A, 1 2 3

3.5.2 LEMMA.
(i) PP P, =Py P =P, P, =P, and p, =,
(i1) pl(l) = @4(1) = 4, pz(l) = 6, @5(1) = 14,

w3(1) = wﬁ(l) = 20 and @7(1) = 64.

() (o)

7 ' 75

(o0)

3 ¢§W)) =

(iii) mult(p wgw)) = mult(wgw), ©

(w) (m)p(m)) -9

mult(go7 , o

The module M(\) (AeA’) for the infinite group G(w)

= SL(4,K)
satisfies M(A)* o M(—wOA) where M(A)* denotes the contragredient of
M(A) and W, denotes the longest element of the Weyl group of V¥
(see Steinberg [11], p. 213). In the present situation, W,
exchanges Al with AB and fixes A2. This gives (i).

Let XA e A” and let V(A>E denote an irreducible module of
highest weight A for the simple Lie algebra over T of type V. By

tensoring a minimal admissible lattice in V(A)E with K we obtain a

()

G 7’ -module V(A) (called a Weyl module). V(A) possesses a
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"contravariant form" the kernel N of which is the unique maximal
submodule of V(A). Furthermore, V(A)/N ~ M(A) (see Wong [11], p.
362). By using Freudenthal’s formula or by writing down semistandard
Young tableaux as in James and Kerber [8], one can compute the formal
character c¢h(A) of V(A). Then, by inspecting the (Gram) matrix of
the contravariant form, one can determine which weights (with
multiplicity) are lost in passing to the quotient V(A)/N and thus
determine the formal character p-ch(A) of M(A). 1In particular, this
process gives the degree formulas in (ii). (Although the method
described is not practical in general, it is suitable for our present
needs.)

Finally, we turn to the multiplicity formulas in (iii). Given
XA, M € AT, the formal character of M()\) & M(X') is
(p—ch(A)) (p-ch(A’)). Also, the set {p-ch(p)|u € A*} is a Z-basis for
the set of elements in the group ring Z[A] which are invariant under
the Weyl group (see Bourbaki [2], chap. VI, 8§83, no. 4). It follows

that if one can find a decomposition (p~ch(A))(p-ch(A’)) =¥ p-ch(p;)

(ui € A*), then the M(ui) must be the composition factors of M(A) ®
M(A’). 1In [6], the composition factors of the products M(A) o M(A")
with A, A’ € Ap were computed by applying the described method to a
few of the products to get started (using parts (i) and (ii) and

2.6.2 to keep trial and error to a minimum) and then by applying
associativity of tensor products (writing appropriate three-fold tensor
products in two ways) to obtain the composition factors of the
remaining products.

We now return to the proof of 3.5.1 (iv). If m=1 the formula

b
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is obvious, so assume m > 1. The partial order lattice in Ap is

0<5,1<6,4<3 and 2 < 7. Using 3.5.2 we find that %7(1) =1,
¥ (1)
¥, (1)

4, ws(l) =6, ¢4(1) =12, ¢3(1) = 4, ¢2(1) = 12 and

12 in the notation of 3.3.2. Now Y 1is the set of all

yIAI + yZAZ + ySAS € Ap satisfying 3y + 2y, +y, <6,

2y1 + 4y2 + 2y3 < 8 and y, + 2y2 + 3y3 < 6, so that Y = Ap\{7}. By
3.4.12 @ 1is satisfied if (ci) = (0), so 3.4.3 implies x € 9(90).
The degree formula now follows from 3.3.2 after we note that the degree

of the Steinberg character is ofm (by 3.5.2 (ii) and 1.2.1).
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